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Abstract

In previous work [1], the Probabilistic Neural Network, PNN, [2] was shown to provide better

zero-reject error performance on character and fingerprint classification problems than Radial Basis

Function, RBF, and Multilayer Perceptron, MLP, based neural network methods. Later work [3]

demonstrated that various combined neural networks could provide performance equal to PNN and
substantially better error-reject performance but these systems were very expensive to train and were

much slower and less memory efficient than MLP based systems. In this paper, we will show that

performance equal to or better than PNN can be achieved with a single three-layer MLP by making
fundamental changes in the network optimization strategy. These changes are: 1) Neuron activation

functions are used which reduce the probability of singular Jacobians; 2) Successive regularization is

used to constrain volume of the weight space being minimized; 3) Boltzmann pruning is used [4] to

constrain the dimension of the weight space; and 4) Prior class probabilities are used to normalize all

error calculations so that statistically significant samples of rare but important classes can be included

without distortion of the error surface. All four of these changes are made in the inner loop of a

conjugate gradient optimization iteration [5] and are intended to simplify the training dynamics of

the optimization. On handprinted digits and fingerprint classification problems these modifications

improve error-reject performance by factors between 2 and 4 and reduce network size by 40% to 60%.

1 Introduction

In previous work on character and fingerprint classification [1] PNN networks were shown to be superior

to MLP networks in classification accuracy. In later work, [3], combinations of PNN and MLP networks

were shown to be equal to PNN in accuracy and to have superior reject-accuracy performance. These

results were achieved by using 45 PNN networks to make binary decisions between digit pairs and

combining the 45 outputs with a single MLP. This procedure is much more expensive than conventional

MLP training of a single network and uses much more memory space.

When the results of the binary decision network [3] were analyzed it was found that the feature space

used in the recognition process has a topological structure which locally had an intrinsic dimension

151



[6] of 10.5 but global Karhunen-Loeve, K-L, transform dimension of approximately 100. The number

of features needed to make binary decisions machines discriminate between digits was larger than the

intrensic dimensinality. For binary decision machines, typical feature set sizes are 20 to 28 but never

approached number of features required by the global problem for MLPs, 48 to 52. Similar tests showed

a comparable structure in the fingerprint feature data. This explains the difficulty of the problem; the

MLP is being used to approximate a very complex fractal object, the set of decision surfaces, which

has a typical local dimension of 10 embedded in a space of dimension 100. Since the domain of each

prototype in the PNN network is local, PNN can more easily approximate surfaces with this topology.

Figure 1 shows a typical PNN decision surface and figure 2 shows a typical MLP decision surface. See

figure 8 of [1] for additional examples of this type of local structure in PNN based recognition.

The local nature of PNN decision surfaces also explains why MLPs have better reject accuracy

performance. In [7], it was shown that the slope of the reject-accuracy curve is most rapidly decreasing

when binary choices are made between classes. The decision surfaces in figure 1 are such that, as the

radius of a test region expands, multiple class regions are intersected. This will decrease the slope of

the reject-accuracy curve. Simpler class decision surfaces result in better reject-accuracy performance

so that the shape of the reject curve can be used to assess the complexity of decision surfaces.

Neural networks have been proven to be a general nonlinear function approximator [8] so, in theory,

they should be capable of approximating complex decision surfaces. In this paper we will show that

four modifications to the conjugate gradient method discussed in [5] will allow a three layer MLP
to approximate the required decision surface with zero-reject accuracy similar to PNN and k nearest

neighbor, KNN, methods and reject-accuracy performance better than the best binary decision method

discussed in [3], indicating that the resulting decision surfaces are both the most accurate and simplest

approximations to the character and fingerprint classification problem yet found.

In section 2 we will discuss the changes in training method used to improve network accuracy

while simplifying network structure. In section 3 we will discuss the dynamics which suggested these

changes in network training. In section 4 we will discuss the results of these changes on classification

of handprinted digits and fingerprints.

2 Optimization Constraints

The level of improvement in network performance which is achieved here requires four modifications

in the optimization, each of which must be incorporated in the weight and error calculations of the

scaled conjugate iteration [5]. Each of these constraints alters the dynamics of the training process in

a way that simplifies the form of the decision surfaces, which globally have a dimension of about 100

with a local dimensionality of 10. Understanding the topology of this space is useful for developing

improved training methods based on dynamics.

The four modifications all modify the error surface being optimized by changing the shape or

dimension of the error function. All of the modifications take place in the inner loop of the optimization.

2.1 Regularization

Regularization decreases the volume of weight space used in the optimization process. This is achieved

by adding an error term which is proportional to the sum of the squares of the weights. The effect

is to create a parabolic term in the error function that is centered on the origin. This reduces the

average magnitude of the weights. A scheduled sequence of regularization values is used which starts

with high regularization and decreases until no further change in the form of the error reject curve is

detected. Constraining the network weights causes a simplification in network structure by reducing

the number of bits in the weights and therefore the amount of information contained in the network.

2.2 Sine Activation

The usual form for the activation function for neural networks is a sigmoidal or logistic function. This

function has small changes in all derivatives for large or small value of the input signal. This results in
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sets of conditions where the Jacobian of the dynamical system being optimized is effectively singular

[9]. This results in large numbers of near zero eigenvalues for the optimization process and forces the

optimization to be dominated by center manifold dynamics [10, 11]. Changing the activation function

to a sinusoidal function creates a significant change in the dynamics of the training since even and

odd higher derivatives of the dynamical system are never both small. This improves network training

dynamics and results in better reject-accuracy performance and simpler networks [12].

2.3 Boltzmann Pruning

Boltzmann pruning has two effects on the training process. First, it takes small dynamic components

which have small real eigenvalues and are therefore near the center manifold and places them on

the center manifold. This simplifies training dynamics by reducing weight space dimension. Second,

Boltzmann pruning keeps the information content of the weights bounded at values which are equal

to or less than the information content of the feature set. For example, when K-L features are derived

from binary images, the significance of the feature is no greater than the number of significant digits in

the mean image value used in the calculation, log2 N bits for N training examples. Boltzmann pruning

forces this constraint on the weights [4].

In [4], when Boltzmann pruning was used, detailed annealing schedules were used to insure conver-

gence of the training process. When regularization is combined with pruning the need for annealing

schedules is removed and pruning can proceed concurrently with the regularization process. This

reduces the cost of pruning to a small computational cost associated with the weight removal.

2.4 Class Based Error Weights

In problems with widely variant prior class probabilities, such as fingerprint classification, it may be

necessary to provide large samples of rare classes so that class statistics are accurately represented,

but it is important to train the classifier with the correct prior class probabilities. This is discussed

in chapter 7 of [13]. In the conjugate gradient method used here both the network errors and error

signals used in the control of the iteration must be calculated using class weights thus:

Error --
^ Class Weights x Raw Error

^^Class Weights

This insures that the optimization is performed in a way that produces the best solution to the

global problem but allows reasonable sampling of less common classes.

3 Neurodynamics of Learning

The design and implementation of most neural network architectures is based on the result of analysis of

the size and content of the network training data. These direct forms of analysis are suitable when the

size of the training data is small, the class distribution is uniform, and the local and global dimension

of the feature set are approximately equal. In fingerprint and character classification applications the

training sets are large and the local and global rank of the feature data are very different. The complex

structure of the training data requires that large networks, 10 4 weights and 10 2 nodes, be used. If

the training process is treated as a dynamical system with the weights as the independent variables

the this would result in a Jacobian with 10 8 terms. Previous pruning studies have shown that these

networks contain at least 50% redundant weights [4] and have confirmed that no more than 12 bits of

these weights are significant. This makes direct analysis of the Jacobian is numerically intractable.

To avoid the difficulties in analyzing this complex, low accuracy system we looked directly at the

qualitative properties expected in systems of this kind [10, 14, 15] and altered the training procedure to

take the expected dynamic behavior into account. This analysis used the dynamical systems approach

to provide us with qualitative information about the phase portrait of the system during training

153



rather than a statistical representation of the weight space of the MLP network. For this approach we

considered the training process as an n-dimensional dynamical system [16] where for a given neuron:

dui

dri

U;
+ fj (

uj ) + Ii

Ti

where is the time for the unit and fj is the input-output transfer function which is a sinusoidal

function driven through the Wij interconnection weights:

, , . 1 1 .

=
g
+ 9

sm(^WijUj))

i

and Ii is the initial input. We effectively reduce the dimension of the problem using the center manifold

approach [11]. This approach is similar to the Lyapunov-Schmidt technique [17] which reduces the

dimension of the system from n to the dimension of the center manifold which in numerical calculations

is equal to the number of calculable eigenvalues. Since the number of weights in the typical network

is approximately 104 and the number of bits in the feature data is approximately 12, direct numerical

methods for calculation of the eigenvalues form the linearized dymamics are very poorly conditioned.

The center manifold method has the advantage over the Lyapunov method in that the reduced problem

still is a dynamical system with the same dynamic properties as the original system. This reduction in

dimension is implemented using the Boltzmann machine for scaled conjugate gradient (SCG) learning

algorithm.

The reduced problem after application of the center manifold method is still a SCG system. The

SCG requires that at any given point, the performance of the dynamical system be assessable through a

certain error function, E. Then the system parameters are iteratively adjusted in the opposite direction

of error. The reduction on the size of error can be approximated as follows:

dw _ dE
dr ^ dw'

where rj is the learning rate or time constant for parameter dynamics, w is the weight, and E is the

error.

This approach, unlike most training methods, can reduce the error independent of the content of

the particular sample distribution and the size of training data. This results in a saving in training time

and improvement in performance without analysis of those network components which make minimal

contributions to the learning process.

4 Results

The training method was used on samples of handprinted digits and fingerprints. The digit sample

contained 7480 training and 23140 testing examples equally distributed for classess “0” to “9”. The
fingerprint data contained 2000 training and 2000 testing samples from NIST database SD4 [18]. These

training and test samples are identical to those used in [1].

4.1 Digit Recognition

Figure 3 compares the results of digit recognition using MLP networks with sinusoidal and sigmoidal

activation functions to a PNN network. Both MLPs were trained using successive regularization and

Boltzmann pruning. The zero reject error rates are 3.34% for the sigmoidal MLP, 2.54% for the PNN,
and 2.45% for the sinusoidal MLP. The sinusoidal result is the best yet achieved on this data and
is comparable to human performance [19]. The slope of the curves is initially proportional to their

accuracy initially, but at higher reject rates the sinusoidal MLP has substantially better performance,

indicating simpler decision surfaces.
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4.2 Fingerprint Classification

Figure 4 compares the results of fingerprint classification using MLP networks with sinusoidal and

sigmoidal activation functions to a PNN network. Both MLPs were trained using successive regular-

ization and Boltzmann pruning. The zero reject error rates are 9.2% for the sigmoidal MLP, 7.18% for

the PNN, and 7.8% for the sinusoidal MLP. The sinusoidal result is not as low as PNN at zero rejection

indicating that the decision surfaces required for this problem are more complex than less difficult digit

recognition problem. The slope of the reject-error curves is not proportional to the accuracy initially

nor at any other point. However, at higher reject rates the sinusoidal MLP has substantially better

performance, indicating simpler decision surfaces are providing better confidence estimates used to

generate the error-reject curve. At 10% reject the error rates have changed to 5.45% for the sigmoidal

MLP, 4.96% for the PNN, and 3.43% for the sinusoidal MLP. This again demonstrates that the decision

surfaces generated by the dynamically optimized MLP are simpler than those of the other networks.

5 Conclusions

In this paper we have shown that some relatively low cost modifications to the MLP training process

based on training dynamics can result in lower error and better error-reject performance on difficult

classification problems. These improvements follow directly from less complex decision surfaces. The
digit recognition problem was solved with consistently better performance at all reject rates. The more
difficult fingerprint classification problem was solved in a way which still showed some advantage for

complex PNN decision surfaces at zero reject, but which yielded better performance than PNN after

a small percentage of the low confidence classifications were rejected.
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Figure 1: The diagram shows digit classifications generated by a PNN classifier using the first two K-L

components in a region centered on (0,0) with an extent large enough to contain the feature vectors.

Figure 2: The diagram shows digit classifications generated by a MLP classifier using the first two K-L

compenents in a region centered on (0,0) with an extent large enough to contain the feature vectors.
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Figure 3: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of digits.
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Figure 4: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of fingerprints.
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